añadir punto y coma
He leído un archivo csv y lo he girado para llegar a la siguiente estructura:
pivoted = df.pivot('user_id', 'group', 'value')
lookup = df.drop_duplicates('user_id')[['user_id', 'group']]
lookup.set_index(['user_id'], inplace=True)
result = pivoted.join(lookup)
result = result.fillna(0)
Sección del resultado:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 group
user_id
2 33653 2325 916 720 867 187 31 0 6 3 42 56 92 15 l-1
4 18895 414 1116 570 1190 55 92 0 122 23 78 6 4 2 l-2
16 1383 70 27 17 17 1 0 0 0 0 1 0 0 0 l-2
50 396 72 34 5 18 0 0 0 0 0 0 0 0 0 l-3
51 3915 1170 402 832 2791 316 12 5 118 51 32 9 62 27 l-4
Quiero sumar de la columna 0 a la columna 13 por cada fila y dividir cada celda por la suma de esa fila. Todavía me estoy acostumbrando a los pandas; si entiendo correctamente, ¿deberíamos tratar de evitar bucles for cuando hacemos cosas como esta? En otras palabras, ¿cómo puedo hacer esto a la manera de los ‘pandas’?
souf ee
Más simple:
result.div(result.sum(axis=1), axis=0)
Prueba lo siguiente:
In [1]: import pandas as pd
In [2]: df = pd.read_csv("test.csv")
In [3]: df
Out[3]:
id value1 value2 value3
0 A 1 2 3
1 B 4 5 6
2 C 7 8 9
In [4]: df["sum"] = df.sum(axis=1)
In [5]: df
Out[5]:
id value1 value2 value3 sum
0 A 1 2 3 6
1 B 4 5 6 15
2 C 7 8 9 24
In [6]: df_new = df.loc[:,"value1":"value3"].div(df["sum"], axis=0)
In [7]: df_new
Out[7]:
value1 value2 value3
0 0.166667 0.333333 0.500
1 0.266667 0.333333 0.400
2 0.291667 0.333333 0.375
O puedes hacer lo siguiente:
In [8]: df.loc[:,"value1":"value3"] = df.loc[:,"value1":"value3"].div(df["sum"], axis=0)
In [9]: df
Out[9]:
id value1 value2 value3 sum
0 A 0.166667 0.333333 0.500 6
1 B 0.266667 0.333333 0.400 15
2 C 0.291667 0.333333 0.375 24
O directamente desde el principio:
In [10]: df = pd.read_csv("test.csv")
In [11]: df
Out[11]:
id value1 value2 value3
0 A 1 2 3
1 B 4 5 6
2 C 7 8 9
In [12]: df.loc[:,"value1":"value3"] = df.loc[:,"value1":"value3"].div(df.sum(axis=1), axis=0)
In [13]: df
Out[13]:
id value1 value2 value3
0 A 0.166667 0.333333 0.500
1 B 0.266667 0.333333 0.400
2 C 0.291667 0.333333 0.375
Cambiando la columna value1
y similares a sus encabezados deberían funcionar de manera similar.
más fácil de trabajar por columna:
df = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]])
(df.T / df.T.sum()).T
resultado:
0 1 2
0 0.166667 0.333333 0.500
1 0.266667 0.333333 0.400
2 0.291667 0.333333 0.375
-
Mucho mejor solución, muy bajo consumo de memoria 🙂
– AMP
23 de febrero de 2020 a las 12:28
EdChum
Lo siguiente pareció funcionar bien para mí:
In [39]:
cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
result[cols] = result[cols].apply(lambda row: row / row.sum(axis=1), axis=1)
result
Out[39]:
0 1 2 3 4 5 6 \
user_id
2 0.864827 0.059749 0.023540 0.018503 0.022280 0.004806 0.000797
4 0.837285 0.018345 0.049453 0.025258 0.052732 0.002437 0.004077
16 0.912269 0.046174 0.017810 0.011214 0.011214 0.000660 0.000000
50 0.754286 0.137143 0.064762 0.009524 0.034286 0.000000 0.000000
51 0.401868 0.120099 0.041265 0.085403 0.286491 0.032437 0.001232
7 8 9 10 11 12 13 \
user_id
2 0.000000 0.000154 0.000077 0.001079 0.001439 0.002364 0.000385
4 0.000000 0.005406 0.001019 0.003456 0.000266 0.000177 0.000089
16 0.000000 0.000000 0.000000 0.000660 0.000000 0.000000 0.000000
50 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
51 0.000513 0.012113 0.005235 0.003285 0.000924 0.006364 0.002772
group
user_id
2 l-1
4 l-2
16 l-2
50 l-3
51 l-4
OK borra lo anterior, lo siguiente será mucho más rápido:
result[cols] = result[cols].div(result[cols].sum(axis=1), axis=0)
Y solo para probar que el resultado es el mismo:
In [47]:
cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
np.alltrue(result[cols].div(result[cols].sum(axis=1), axis=0) == result[cols].apply(lambda row: row / row.sum(axis=1), axis=1))
Out[47]:
True
Y que es más rápido:
In [48]:
cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
%timeit result[cols].div(result[cols].sum(axis=1), axis=0)
%timeit result[cols].apply(lambda row: row / row.sum(axis=1), axis=1)
100 loops, best of 3: 2.38 ms per loop
100 loops, best of 3: 4.47 ms per loop
result.iloc[:,:-1].div(result.iloc[:,:-1].sum(axis=1), axis=0)
result.iloc[:,:-1]
obtiene todas las filas y columnas excepto la última columna
result.iloc[:,:-1].sum(axis=1)
sumas en una fila debido al eje = 1, el valor predeterminado es axis=0
es decir, columna
result.div(result, axis=0)
axis=0
porque el valor predeterminado para div es columna, es decir axis=1
-
Esta respuesta no parece única ya que contiene elementos ya incluidos en otras respuestas
– aaossa
8 de marzo a las 18:56
-
Esta respuesta no parece única ya que contiene elementos ya incluidos en otras respuestas
– aaossa
8 de marzo a las 18:56
Creo que sí, yendo más sudo:
0/sum(0..13),1/sum(0..13)
ademáscolumn 0
es el nombre de la columna no es necesario su índice.`– añadir punto y coma
23/10/2014 a las 21:44